sfc
Release Latest

May 09, 2019

Contents

1 Release Documetation 1

2 Development Documentation 7

CHAPTER 1

Release Documetation

1.1 SFC installation and configuration instruction

1.1.1 Abstract

This document provides information on how to install the OpenDaylight SFC features in OPNFV with the use of
os_odl-sfc-(no)ha scenario.

1.1.2 SFC feature desciription

For details of the scenarios and their provided capabilities refer to the scenario description documents:
¢ <os-odl-sfc-ha>
* <os-odl-sfc-noha>

The SFC feature enables creation of Service Fuction Chains - an ordered list of chained network funcions (e.g. fire-
walls, NAT, QoS)

The SFC feature in OPNFV is implemented by 3 major components:
* OpenDaylight SDN controller
e Tacker: Generic VNF Manager (VNFM) and a NFV Orchestrator (NFVO)

* OpenvSwitch: The Service Function Forwarder(s)

1.1.3 Hardware requirements

The SFC scenarios can be deployed on a bare-metal OPNFV cluster or on a virtual environment on a single host.

sfc, Release Latest

Bare metal deployment on (OPNFV) Pharos lab

Hardware requirements for bare-metal deployments of the OPNFV infrastructure are given by the Pharos project. The
Pharos project provides an OPNFV hardware specification for configuring your hardware: http://artifacts.opnfv.org/
pharos/docs/pharos-spec.html

Virtual deployment

SFC scenarios can be deployed using APEX installer and xci utility. Check the requirements from those in order to be
able to deploy the OPNFV-SEC:

Apex: https://wiki.opnfv.org/display/apex/Apex XCI: https://wiki.opnfv.org/display/INF/XCI+Developer+Sandbox

1.2 SFC Release Notes

1.2.1 Abstract

This document compiles the release notes for the Gambia release of OPNFV SFC

1.2.2 Important notes

These notes provide release information for the use of SFC with the Apex installer, xci tool and Compass4NFV for
the Gambia release of OPNFV.

1.2.3 Summary
The goal of the SFC release is to integrate the OpenDaylight SFC project into an OPNFV environment, with either the
Apex installer, xci tool or Compass4NFV.
More information about OpenDaylight and SFC can be found here.
e OpenDaylight version “Fluorine SR1”
* Service function chaining
* Documentation built by Jenkins

— Overall OPNFV documentation

Design document

User Guide

Installation Instructions

Release Notes (this document)

2 Chapter 1. Release Documetation

http://artifacts.opnfv.org/pharos/docs/pharos-spec.html
http://artifacts.opnfv.org/pharos/docs/pharos-spec.html
https://wiki.opnfv.org/display/apex/Apex
https://wiki.opnfv.org/display/INF/XCI+Developer+Sandbox
http://www.opendaylight.org
https://wiki.opnfv.org/display/sfc/Service+Function+Chaining+Home

sfc, Release Latest

1.2.4 Release Data

Project sfc

Repo/tag opnfv-7.2.0

Release designa- | Gambia 7.2

tion

Release date January 25th, 2019

Purpose of the de- | Move to OpenStack Rocky, ODL FLuorine and OVS 2.9.2 (NSH native support) Move to
livery odl_v2 driver in n-sfc

Version change

Module version changes

This release of OPNFV sfc is based on following upstream versions:
* OpenStack Rocky release
* OpenDaylight Fluorine SR1 release
* Open vSwitch 2.9.2

Document changes

This is the first tracked version of OPNFV SFC Gambia. It comes with the following documentation:
* Design document
* User Guide
¢ Installation Instructions

¢ Release notes (This document)

Reason for version

Feature additions

Use odl_v2 driver for n-sfc
e Unit test creation
e Code refactored

e Tests can be run without tacker and with n-sfc directly

Bug corrections

Deliverables

Software deliverables

No specific deliverables are created, as SFC is included with Apex and Compass4NFV.

1.2. SFC Release Notes 3

sfc, Release Latest

Documentation deliverables

* Design document
e User Guide
e Installation Instructions

¢ Release notes (This document)

1.2.5 Known Limitations, Issues and Workarounds

System Limitations

The Gambia 2.0 release has a few limitations:

1 - The testcase sfc_two_chains_SSH_and_HTTP is disabled in this release due to a missing feature in ODL. We are
unable to currently update a chain config

Known issues

1 - When tacker is deployed without Mistral, there is an ERROR in the logs and the VIM is always in ‘PENDING’
state because tacker cannot monitor its health. However, everything works and SFs can be created.

2 - When tacker is deployed without barbican, it cannot be in HA mode because barbican is the only way to fetch the
fernet keys.

Workarounds

1.2.6 Test results

The Gambia release of SFC has undergone QA test runs with Functest tests on the Apex and Compass installers and
xci utility

1.2.7 References

For more information on the OPNFV Gambia release, please see:

OPNFV

1) OPNFV Home Page
2) OPNFV documentation- and software downloads

3) OPNFV Gambia release

OpenStack

4) OpenStack Rocky Release artifacts

5) OpenStack documentation

4 Chapter 1. Release Documetation

https://www.opnfv.org
https://www.opnfv.org/software/download
https://docs.opnfv.org/en/stable-gambia/index.html
http://www.openstack.org/software/rocky
http://docs.openstack.org

sfc, Release Latest

OpenDaylight

6) OpenDaylight artifacts

1.3 SFC User Guide

1.3.1 SFC description

The OPNFV SFC feature will create service chains, classifiers, and create VMs for Service Functions, allowing for
client traffic intended to be sent to a server to first traverse the provisioned service chain.

The Service Chain creation consists of configuring the OpenDaylight SFC feature. This configuration will in-turn
configure Service Function Forwarders to route traffic to Service Functions. A Service Function Forwarder in the
context of OPNFV SFC is the “br-int” OVS bridge on an Open Stack compute node.

The classifier(s) consist of configuring the OpenDaylight Netvirt feature. Netvirt is a Neutron backend which handles
the networking for VMs. Netvirt can also create simple classification rules (5-tuples) to send specific traffic to a pre-
configured Service Chain. A common example of a classification rule would be to send all HTTP traffic (tcp port 80)
to a pre-configured Service Chain.

Service Function VM creation is performed via a VNF Manager. Currently, OPNFV SFC is integrated with OpenStack
Tacker, which in addition to being a VNF Manager, also orchestrates the SFC configuration. In OPNFV SFC Tacker
creates service chains, classification rules, creates VMs in OpenStack for Service Functions, and then communicates
the relevant configuration to OpenDaylight SFC.

1.3.2 SFC capabilities and usage

The OPNFV SFC feature can be deployed with either the “os-odl-sfc-ha” or the “os-odl-sfc-noha” scenario. SFC
usage for both of these scenarios is the same.

As previously mentioned, Tacker is used as a VNF Manager and SFC Orchestrator. All the configuration necessary to
create working service chains and classifiers can be performed using the Tacker command line. Refer to the Tacker
walkthrough (step 3 and onwards) for more information.

SFC API usage guidelines and example

Refer to the Tacker walkthrough for Tacker usage guidelines and examples.

1.3. SFC User Guide 5

http://www.opendaylight.org/software/downloads
https://github.com/trozet/sfc-random/blob/master/tacker_sfc_apex_walkthrough.txt
https://github.com/trozet/sfc-random/blob/master/tacker_sfc_apex_walkthrough.txt
https://github.com/trozet/sfc-random/blob/master/tacker_sfc_apex_walkthrough.txt

sfc, Release Latest

6 Chapter 1. Release Documetation

CHAPTER 2

Development Documentation

2.1 Service Function Chaining (SFC)

2.1.1 Requirements

This section defines requirements for the initial OPNFV SFC implementation, including those requirements driving
upstream project enhancements.

Minimal Viable Requirement

Deploy a complete SFC solution by integrating OpenDaylight SFC with OpenStack in an OPNFV environment.

Detailed Requirements

These are the Fraser specific requirements:

1 The supported Service Chaining encapsulation will be NSH VXLAN-GPE.

2 The version of OVS used must support NSH.

3 The SF VM life cycle will be managed by the Tacker VNF Manager.

4 The supported classifier is OpenDaylight NetVirt.

5 ODL will be the OpenStack Neutron backend and will handle all networking on the compute nodes.
6 Tacker will use the networking-sfc API to configure ODL

7 ODL will use flow based tunnels to create the VXLAN-GPE tunnels

sfc, Release Latest

Long Term Requirements

These requirements are out of the scope of the Fraser release.

1 Dynamic movement of SFs across multiple Compute nodes.

2 Load Balancing across multiple SFs

3 Support of a different MANO component apart from Tacker

2.2 Service Function Chaining (SFC)

2.2.1 Introduction

The OPNFYV Service Function Chaining (SFC) project aims to provide the ability to define an ordered list of a network
services (e.g. firewalls, NAT, QoS). These services are then “stitched” together in the network to create a service
chain. This project provides the infrastructure to install the upstream ODL SFC implementation project in an NFV

environment.

2.2.2 Definitions

Definitions of most terms used here are provided in the IETF SFC Architecture RFC. Additional terms specific to the

OPNFV SFC project are defined below.

2.2.3 Abbreviations

Table 1: Abbreviations

Abbreviation | Term

NS Network Service

NFVO Network Function Virtualization Orchestrator
NF Network Function

NSH Network Services Header (Service chaining encapsulation)
ODL OpenDaylight SDN Controller

RSP Rendered Service Path

SDN Software Defined Networking

SF Service Function

SFC Service Function Chain(ing)

SFF Service Function Forwarder

SFP Service Function Path

VNF Virtual Network Function

VNFM Virtual Network Function Manager

VNF-FG Virtual Network Function Forwarding Graph
VIM Virtual Infrastructure Manager

2.2.4 Use Cases

This section outlines the Danube use cases driving the initial OPNFV SFC implementation.

Chapter 2. Development Documentation

https://wiki.opnfv.org/display/sfc/Service+Function+Chaining+Home
https://datatracker.ietf.org/doc/rfc7665/

sfc, Release Latest

Use Case 1 - Two chains

This use case is targeted on creating simple Service Chains using Firewall Service Functions. As can be seen in the
following diagram, 2 service chains are created, each through a different Service Function Firewall. Service Chain 1
will block HTTP, while Service Chain 2 will block SSH.

Initial Use Case

Logical Overview

| Dynamic Classifier mapping |

| Client! = Service Chaini .. | Block

| Client2 = Service Chain2 | | ssH
-
Ingress Egress
Classifier Classifier

=

&

w 1.3
Legend: Service Service

SFF: Service Function Forwarder |Chain 1 ™| |Chain 2
SF: Service Function

This NW topology is a logical view

Use Case 2 - One chain traverses two service functions

This use case creates two service functions, and a chain that makes the traffic flow through both of them. More
information is available in the OPNFV-SFC wiki:

https://wiki.opnfv.org/display/sfc/Functest+SFC-ODL+-+Test+2

2.2.5 Architecture

This section describes the architectural approach to incorporating the upstream OpenDaylight (ODL) SFC project into
the OPNFV Danube platform.

Service Functions

A Service Function (SF) is a Function that provides services to flows traversing a Service Chain. Examples of typical
SFs include: Firewall, NAT, QoS, and DPI. In the context of OPNFYV, the SF will be a Virtual Network Function. The
SFs receive data packets from a Service Function Forwarder.

Service Function Forwarders

The Service Function Forwarder (SFF) is the core element used in Service Chaining. It is an OpenFlow switch that, in
the context of OPNFV, is hosted in an OVS bridge. In OPNFV there will be one SFF per Compute Node that will be
hosted in the “br-int” OpenStack OVS bridge.

2.2. Service Function Chaining (SFC) 9

https://wiki.opnfv.org/display/sfc/Functest+SFC-ODL+-+Test+2

sfc, Release Latest

The responsibility of the SFF is to steer incoming packets to the corresponding Service Function, or to the SFF in the
next compute node. The flows in the SFF are programmed by the OpenDaylight SFC SDN Controller.

Service Chains

Service Chains are defined in the OpenDaylight SFC Controller using the following constructs:
SFC A Service Function Chain (SFC) is an ordered list of abstract SF types.

SFP A Service Function Path (SFP) references an SFC, and optionally provides concrete information about the SFC,
like concrete SF instances. If SF instances are not supplied, then the RSP will choose them.

RSP A Rendered Service Path (RSP) is the actual Service Chain. An RSP references an SFP, and effectively merges
the information from the SFP and SFC to create the Service Chain. If concrete SF details were not provided in
the SFP, then SF selection algorithms are used to choose one. When the RSP is created, the OpenFlows will be
programmed and written to the SFF(s).

Service Chaining Encapsulation

Service Chaining Encapsulation encapsulates traffic sent through the Service Chaining domain to facilitate easier
steering of packets through Service Chains. If no Service Chaining Encapsulation is used, then packets much be
classified at every hop of the chain, which would be slow and would not scale well.

In ODL SFC, Network Service Headers (NSH) is used for Service Chaining encapsulation. NSH is an IETF specifi-
cation that uses 2 main header fields to facilitate packet steering, namely:

NSP (NSH Path) The NSP is the Service Path ID.

NSI (NSH Index) The NSI is the Hop in the Service Chain. The NSI starts at 255 and is decremented by every SF. If
the NSI reaches 0, then the packet is dropped, which avoids loops.

NSH also has metadata fields, but that’s beyond the scope of this architecture.
In ODL SFC, NSH packets are encapsulated in VXLAN-GPE.

Classifiers

A classifier is the entry point into Service Chaining. The role of the classifier is to map incoming traffic to Service
Chains. In ODL SFC, this mapping is performed by matching the packets and encapsulating the packets in a VXLAN-
GPE NSH tunnel.

The packet matching is specific to the classifier implementation, but can be as simple as an ACL, or can be more
complex by using PCRF information or DPIL.

VNF Manager

In OPNFV SFC, a VNF Manager is needed to spin-up VMs for Service Functions. It has been decided to use the
OpenStack Tacker VNF Mgr to spin-up and manage the life cycle of the SFs. Tacker will receive the ODL SFC
configuration, manage the SF VMs, and forward the configuration to ODL SFC. The following sequence diagram
details the interactions with the VNF Mgr:

10 Chapter 2. Development Documentation

sfc, Release Latest

Sequence diagram: SF creation

In this scenario, the VNF-Mgr is responsible for:
e driving configuration into the ODL SFC
e requesting VM creation from NFVI
Operator is any generic trigger

Needs to map ODL
Create SF: SFtype to concrete
SFtype, VXLAN, Create VM: VM instance.
Ip/Port SFtype, VxLAN, Ip/Port “ VM
2
< Return VM details ﬂ

Create SF:
SFtype, VxLAN,
Ip/Port

Store SF

connection info

OPNFV SFC Network Topology

The following image details the Network Topology used in OPNFV Danube SFC:

OPNFV SFC Initial NW Topology

> @

_ Egress
= Classifier

Legend
P VxLAN NSH tunnel SF/SFF
* Classifiers create VxLAN NSH tunnels
-#— QOpenFlow 1.3

Top Of Rack Switch

2.2. Service Function Chaining (SFC)

	Release Documetation
	Development Documentation

